Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Cheng Ma* and Yewei Yang

Department of Chemistry, Zhejiang University, 310027 Hangzhou, People's Republic of China

Correspondence e-mail: mcorg@zju.edu.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.039$
$w R$ factor $=0.122$
Data-to-parameter ratio $=14.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Dimethyl 3-(benzylamino)-2-(4-fluorophenyl)-furan-4,5-dicarboxylate

In the crystal structure of the title compound, $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{FNO}_{5}$, one benzene ring is almost perpendicular to the furan ring, forming a dihedral angle of $87.78(9)^{\circ} . \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules in the crystal structure into sheets parallel to (100).

Comment

Substituted furans play an important role in organic chemistry, not only as key structural units in many natural products and important pharmaceuticals (Dean, 1963; Nakanishi et al., 1974), but also as useful building blocks in synthetic chemistry (Lipshutz, 1986; Raczko \& Jurcak, 1995). Recently, we reported a facile synthesis of polysubstituted 3-aminofurans via a thiazole carbene-mediated multicomponent reaction (Ma \& Yang, 2005). In this paper, we report the crystal structure of dimethyl 3-(benzylamino)-2-(4-fluorophenyl)-furan-4,5-dicarboxylate, (I).

(I)

The molecular structure of (I) is shown in Fig. 1. Selected geometric parameters and hydrogen-bond geometry are listed in Tables 1 and 2, respectively. The dihedral angle between the 4-fluoro-substituted benzene ring and the furan ring is $15.96(8)^{\circ}$, while the other benzene ring is almost perpendicular to the furan ring, with a dihedral angle of 87.78 (9) ${ }^{\circ}$.

In the crystal structure, $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding is found which links the molecules into sheets that are parallel to (100) (Fig. 2).

Experimental

To a suspension of $\mathrm{NaH}(1.5 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$, a solution 3-benzyl-5-(2-hydroxyethyl)4-methyl-1,3-thiazolium chloride $(1.0 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ was added at 195 K under nitrogen. After $10-15 \mathrm{~min}$, a mixture of p-fluorobenzaldehyde (0.5 mmol) and dimethyl acetylenedicarboxylate (0.75 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ was added over a period of 10 min and afterwards stirred for 2 h . Afterwards, the reaction mixture was heated to 273 K and kept at this temperature for 2 h . The resulting mixture was carefully poured into an ice-cooled solution of NaHCO_{3} and then

Received 15 September 2005 Accepted 29 September 2005 Online 5 October 2005
extracted with dichloromethane. The combined organic phases were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the resulting oil was purified by column chromatography to afford the product (I) (65 mg , yield 32%). Compound (I) was recrystallized from AcOEt as paleyellow crystals (m.p. $363-364 \mathrm{~K}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.89$7.86(m, 2 H), 7.28-7.25(m, 3 H), 7.15-7.14(m, 4 H), 4.50(b r s, 1 H)$, $4.03(s, 2 \mathrm{H}), 3.91(s, 3 \mathrm{H}), 3.82(s, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $163.6\left(d, J_{\mathrm{C}-\mathrm{F}}=13.3 \mathrm{~Hz}\right), 161.7,158.5,142.9,140.8,139.1,132.5,128.8$ $\left(d, J_{\mathrm{C}-\mathrm{F}}=9.0 \mathrm{~Hz}\right), 128.0,127.6,126.2\left(d, J_{\mathrm{C}-\mathrm{F}}=3.6 \mathrm{~Hz}\right), 120.2,116.1$, 115.9, 52.6, 52.5, 52.3; HRMS (ESI): m / z, calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{FNO}_{5}\right.$ $+\mathrm{Na}]^{+}: 406.1061$; found: 406.1060; IR (KBr): 3369, 2954, 1734, 1729, 1606, 1500, 1437, 1327, 1221, 1202.

Crystal data

```
C}\mp@subsup{\textrm{C}}{2}{}\mp@subsup{\textrm{H}}{18}{}\mp@subsup{\textrm{FNO}}{5}{
Mr}=383.3
Monoclinic, C2/c
a=19.6280 (4) \AA
b=13.1216 (3) \AA
c=15.2962 (4) \AA
\beta=109.6406 (14)}\mp@subsup{}{}{\circ
V=3710.34 (15) \AA \AA
Z=8
```


Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.859, T_{\text {max }}=0.944$
17710 measured reflections
$D_{x}=1.373 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 11909 reflections
$\theta=1.9-27.5^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=295$ (1) K
Block, colorless
$0.60 \times 0.55 \times 0.55 \mathrm{~mm}$

4264 independent reflections 2715 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-25 \rightarrow 23$
$k=-17 \rightarrow 17$
$l=-19 \rightarrow 19$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.122$
$S=1.00$
4264 reflections
254 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[0.0018 F_{\mathrm{o}}^{2}+\sigma\left(F_{\mathrm{o}}^{2}\right)\right] /\left(4 F_{\mathrm{o}}^{2}\right) \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.26 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.31 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: Larson } \\
& \quad(1970), \text { equation } 22 \\
& \text { Extinction coefficient: } 2.4(4) \times 10^{2}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

F1-C8	$1.3618(18)$	$\mathrm{O} 3-\mathrm{C} 18$	$1.3170(17)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.3734(15)$	$\mathrm{N} 1-\mathrm{C} 2$	$1.4002(17)$
$\mathrm{O} 2-\mathrm{C} 18$	$1.2053(19)$	$\mathrm{N} 1-\mathrm{C} 11$	$1.470(2)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 4$	$107.86(11)$	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 11$	$116.19(11)$
$\mathrm{C} 18-\mathrm{O} 3-\mathrm{C} 19$	$116.18(13)$	$\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 12$	$117.40(12)$

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 101 \cdots \mathrm{O} 2$	0.97	2.28	$3.009(2)$	132
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{O} 4^{\mathrm{i}}$	0.97	2.49	$3.392(2)$	155
$\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.97	2.47	$3.430(2)$	172

Symmetry codes: (i) $-x+\frac{1}{2},-y+\frac{3}{2},-z+1$; (ii) $+x,-y+1,+z+\frac{1}{2}$.
The NH H atom was found in a difference Fourier map and refined as riding, with $\mathrm{N}-\mathrm{H}=0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$. Other H atoms were placed in calculated positions and refined using a riding model with $\mathrm{C}-\mathrm{H}=0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figure 1
The crystal structure of (I), with displacement ellipsoids drawn at the 50% probability level. The dashed line indicates an intramolecular hydrogen bond.

Figure 2
The molecular packing of (I). Dashed lines indicate hydrogen-bonding interactions. H atoms not involved in hydrogen bonding have been omitted. [Symmetry codes: (i) $\frac{1}{2}-x, 1.5-y, 1-z$; (ii) $x, 1-y, \frac{1}{2}+z$.]

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure and PLATON (Spek, 2003).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Dean, F. A. (1963). Naturally Occurring Oxygen Ring Compounds. London: Butterworth.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.

organic papers

Lipshutz, B. H. (1986). Chem. Rev. 86, 795-819
Ma, C. \& Yang, Y. (2005). Org. Lett. 7, 1343-45.
Nakanishi, K., Goto, T., Ito, S., Natori, S. \& Nozoe, S. (1974). Editors. Natural Products Chemistry, Vols. 1-3. Tokyo: Kodansha.
Raczko, J. \& Jurcak, J. (1995). Stud. Nat. Prod. Chem. 16, 639-726.

Rigaku (1998). PROCESS-AUTO. Version 1.06. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2004). CrystalStructure. Version 3.7.0. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

